Roll No......

MEHP/MEPS/MTPS-102

M.E./M.Tech., I Semester

Examination, November 2022

Power System Dynamics Analysis and Control

Time: Three Hours

Maximum Marks: 70

Note: i) Attempt any five questions

- ii) All questions carry equal marks
- 1. a) Give the comparison of angle and voltage stability.
 - Discuss briefly how the following components of power system affect voltage stability of the system: HVDC line, Generator bus voltage, Shant capacitor, Series capacitor
- a) Define the terms "System" and "Model" Explain system model with suitable example.
 - Discuss the method of Excitation control of alternator using simplified representation.
- Enlist the salient steps for modelling of synchronous machine.
 Explain Park's transformation approach for it.
- What are the types of excitation systems? Develop the mathematical model of excitation system and also explain various control and protective schemes of excitation system.
- a) Explain D-Q transformation using L-B variables for a typical long transmission line.
 - b) Discuss the dynamics of synchronous generator connected to estimate bus using synchronous machine.

- . Enumerate transient response of a synchronous machine under:
 - a) Connected to a voltage source
 - b) Connected to an external network
- A 60 Hz, 4 pole turbo-generator rated 100MVA, 13.8 KV has inertia constant of 10 MJ/MVA:
 - a) Find stored energy in the rotor at synchronous speed.
 - b) If the input to the generator is suddenly raised to 60 MW for an electrical load of 50 MW, find rotor acceleration.
 - c) If the rotor acceleration calculated in part (b) is maintained for 12 cycles, find the change in torque angle and rotor speed in rpm at the end of this period.
 - d) Another generator 150 MVA, having inertia constant 4 MJ/MVA is put in parallel with above generator. Find the inertia constant for the equivalent generator on a base 50 MVA.
- 8. Write short note on any two of following.
 - Dynamic load
 - ii) Rotor angle stability
 - iii) SVC compensator

MEHP/MEPS/MTPS-102

PTO